Mengenal Tentang Kimia

Mengenal Tentang Kimia

Mengenal Tentang Kimia
Mengenal Tentang Kimia

Kimia (dari bahasa Arab كيمياء “seni transformasi”, bahasa Yunani χημεία khemeia “alkimia” dan bahasa Mesir Keme “bumi”) adalah ilmu yang mempelajari tentang komposisi, struktur dan sifat zat atau materi dari skala atom hingga molekul, serta segala perubahan atau transformasi yang menyertai reaksi kimia serta interaksi mereka untuk membentuk materi yang ditemukan sehari-hari. 

Jangkauan kimia tidak hanya mempelajari materi nonhayati tapi juga materi hayati serta proses kimia yang terjadi dalam makhluk hidup itu sendiri baik yang ada di bumi dan luar angkasa.


Kimia juga mempelajari pemahaman sifat dan interaksi atom individu dengan tujuan untuk menerapkan pengetahuan tersebut pada tingkat makroskopik. Menurut kimia modern, sifat fisik materi umumnya ditentukan oleh struktur pada tingkat atom yang pada gilirannya ditentukan oleh gaya antaratom.
Kimia sering disebut sebagai “Sentral Ilmu Pengetahuan” karena  ia dipakai, diterapkan, dan dibutuhkan untuk mendukung ilmu pengetahuan lain atau dengan kata lain, kimia berguna untuk menghubungkan berbagai ilmu pengetahuan lain, seperti fisikailmu bahannanoteknologibiologi, astronomifarmasi, lingkungan , kedokteranforensik, bioinformatikageologi dan sebagainya. Hubungan atau interaksi ini timbul melalui berbagai subdisiplin yang memanfaatkan konsep-konsep dari berbagai disiplin ilmu. 

Sebagai contoh, kimia fisik melibatkan penerapan prinsip-prinsip fisika terhadap materi pada tingkat atom dan molekulDalam bidang forensik, digunakan sebagai aplikasi test DNA, bidang farmasi dipergunakan cara sintesis kimia organik, di bidang kedokteran bisa menjelaskan proses metabolisme obat oleh enzim. 

Proses metabolisme makanan, dipelajari menggunakan cabang ilmu kimia yaitu biokimia. Analisis komposisi bintang dan benda angkasa yang lain sangat diperlukan oleh bidang astronomi.


Kimia berhubungan dengan interaksi materi yang dapat melibatkan dua zat atau antara materi dan energi, terutama dalam hubungannya dengan hukum pertama termodinamika. Kimia tradisional melibatkan interaksi antara zat kimia dalam reaksi kimia, yang mengubah satu atau lebih zat menjadi satu atau lebih zat lain.

Kadang reaksi ini digerakkan oleh pertimbangan entalpi, sebagai contoh, ketika dua zat berentalpi tinggi seperti hidrogen dan oksigen elemental, bereaksi membentuk air, yaitu zat dengan entalpi yang lebih rendah. 
Reaksi kimia dapat difasilitasi dengan suatu katalis, yang umumnya merupakan zat kimia lain yang terlibat dalam media reaksi tapi tidak dikonsumsi (contohnya adalah asam sulfat yang mengkatalisasi elektrolisisair) atau fenomena immaterial (seperti radiasi elektromagnet dalam reaksi fotokimia). Kimia tradisional juga menangani analisis zat kimia, baik di dalam maupun di luar suatu reaksi, seperti dalam spektroskopi.

Semua materi normal terdiri dari atom atau komponen-komponen subatomyang membentuk atom; protonelektron, dan neutron. Atom dapat dikombinasikan untuk menghasilkan bentuk materi yang lebih kompleks seperti ionmolekul, atau kristal

Struktur dunia yang kita jalani sehari-hari dan sifat materi yang berinteraksi dengan kita ditentukan oleh sifat zat-zat kimia dan interaksi antar mereka. Baja lebih keras dari besi karena atom-atomnya terikat dalam struktur kristal yang lebih kaku. Kayu terbakar atau mengalami oksidasi cepat karena ia dapat bereaksi secara spontan dengan oksigen pada suatu reaksi kimia, jika berada di atas suatu suhu tertentu.

Zat cenderung diklasifikasikan berdasarkan energi, fase, atau komposisi kimianya. Materi dapat digolongkan dalam 4 fase, urutan dari yang memiliki energi paling rendah adalah padatcairgas, dan plasma. Dari keempat jenis fase ini, fase plasma hanya dapat ditemui di luar angkasayang berupa bintang, karena kebutuhan energinya yang teramat besar. 

Zat padat memiliki struktur tetap pada suhu kamar yang dapat melawan gravitasi atau gaya lemah lain yang mencoba merubahnya. Zat cairmemiliki ikatan yang terbatas, tanpa struktur, dan akan mengalir bersama gravitasi. Gas tidak memiliki ikatan dan bertindak sebagai partikel bebas. Sementara itu, plasma hanya terdiri dari ion-ion yang bergerak bebas; pasokan energi yang berlebih mencegah ion-ion ini bersatu menjadi partikel unsur. Salah satu cara untuk membedakan ketiga fase pertama adalah dengan volume dan bentuknya: secara sederhana dapat dikatakan bahwa, zat padat memiliki volume dan bentuk yang tetap, zat cair memiliki volume tetap tapi tanpa bentuk yang tetap, sedangkan gas tidak memiliki baik volume ataupun bentuk yang tetap.

Air (H2O) berbentuk cairan dalam suhu kamar karena molekul-molekulnya terikat oleh gaya antarmolekul yang disebut ikatan Hidrogen. Di sisi lain, hidrogen sulfida (H2S) berbentuk gas pada suhu kamar dan tekanan standar, karena molekul-molekulnya terikat dengan interaksi dwikutub (dipole) yang lebih lemah. 
Ikatan hidrogen pada air memiliki cukup energi untuk mempertahankan molekul air agar tidak terpisah satu sama lain, tapi tidak untuk mengalir, yang menjadikannya berwujud cairan dalam suhu antara 0 °C sampai 100 °C,  pada permukaan laut. Menurunkan suhu atau energi lebih lanjut menyebabkan bentuk organisasinya menjadi lebih erat, menghasilkan suatu zat padat, dan melepaskan energi. 

Peningkatan energi akan mencairkan es walaupun suhu tidak akan berubah sampai semua es cair. Peningkatan suhu air pada gilirannya akan menyebabkannya mendidih (lihat panas penguapan) sewaktu terdapat cukup energi untuk mengatasi gaya tarik antarmolekul dan selanjutnya memungkinkan molekul untuk bergerak menjauhi satu sama lain.

Ilmuwan yang mempelajari kimia sering disebut kimiawan. Sebagian besar kimiawan melakukan spesialisasi dalam satu atau lebih subdisiplin. Kimia yang diajarkan pada sekolah menengah sering disebut “kimia umum” dan ditujukan sebagai pengantar terhadap banyak konsep-konsep dasar dan untuk memberikan pelajar alat untuk melanjutkan ke subjek lanjutannya. 

Banyak konsep yang dipresentasikan pada tingkat ini sering dianggap tak lengkap dan tidak akurat secara teknis. Walaupun demikian, hal tersebut merupakan alat yang luar biasa. Kimiawan secara reguler menggunakan alat dan penjelasan yang sederhana dan elegan ini, dalam karya mereka, karena terbukti mampu secara akurat membuat model reaktivitas kimia yang sangat bervariasi.

Ilmu kimia secara sejarah merupakan pengembangan baru, tapi ilmu ini berakar pada alkimia yang telah dipraktikkan selama berabad-abad di seantero dunia.

Sejarah

Akar ilmu kimia dapat dilacak hingga fenomena pembakaranApimerupakan kekuatan mistik yang mengubah suatu zat menjadi zat lain dan karenanya merupakan perhatian utama umat manusia. Adalah api yang menuntun manusia pada penemuan besi dan gelas
Setelah emas ditemukan dan menjadi logam berharga, banyak orang yang tertarik menemukan metode yang dapat merubah zat lain menjadi emas. Hal ini menciptakan suatu protosains yang disebut Alkimia. Alkimia dipraktikkan oleh banyak kebudayaan sepanjang sejarah dan sering mengandung campuran filsafatmistisisme, dan protosains.
Alkimiawan menemukan banyak proses kimia yang menuntun pada pengembangan kimia modern. Seiring berjalannya sejarah, alkimiawan-alkimiawan terkemuka (terutama Abu Musa Jabir bin Hayyan dan Paracelsus) mengembangkan alkimia menjauh dari filsafat dan mistisisme dan mengembangkan pendekatan yang lebih sistematik dan ilmiah. 
Alkimiawan pertama yang dianggap menerapkan metode ilmiah terhadap alkimia dan membedakan kimia dan alkimia adalah Robert Boyle (1627–1691). Walaupun demikian, kimia seperti yang kita ketahui sekarang diciptakan oleh Antoine Lavoisier dengan hukum kekekalan massanyapada tahun 1783. Penemuan unsur kimia memiliki sejarah yang panjang yang mencapai puncaknya dengan diciptakannya tabel periodik unsur kimia oleh Dmitri Mendeleyev pada tahun 1869.
Penghargaan Nobel dalam bidang Kimia, yang diberikan sejak tahun 1901, memberikan gambaran bagus mengenai penemuan kimia selama 100 tahun terakhir. Pada bagian awal abad ke-20, sifat subatomik atom diungkapkan dan ilmu mekanika kuantum mulai menjelaskan sifat fisik ikatan kimia. Pada pertengahan abad ke-20, kimia telah berkembang sampai dapat memahami dan memprediksi aspek-aspek biologi yang melebar ke bidang biokimia.
Industri kimia mewakili suatu aktivitas ekonomi yang penting. Pada tahun 2004, produsen bahan kimia 50 teratas global memiliki penjualan mencapai 587 bilyun dolar AS dengan margin keuntungan 8,1% dan pengeluaran riset dan pengembangan 2,1% dari total penjualan [2].

Cabang ilmu kimia

Kimia, umumnya dibagi menjadi beberapa bidang utama. Terdapat pula beberapa cabang antar-bidang dan cabang-cabang yang lebih khusus dalam kimia.

       Kimia analitik, mempelajari tehnik analisa materi  untuk menentukan komposisi dan struktur suatu materi. Kimia analisis juga mempelajari cara analisis standart cuplikan suatu bahan untuk memperoleh pemahaman tentang susunan kimia dan strukturnya. Kimia analitik melibatkan metode eksperimen standar dalam kimia. Metode-metode ini nantinya diharapkan dapat digunakan oleh cabang ilmu kimia yang lain, kecuali untuk kimia teori murni.

       Biokimia mempelajari zat-zat kimia, senyawa kimia, reaksi kimia, dan interaksi kimia yang terjadi pada organisme hidup. Biokimia dan kimia organik berhubungan sangat erat, seperti dalam kimia medisinal atau neurokimia. Biokimia juga berhubungan dengan biologi molekular, fisiologi, dan genetika.

       Kimia anorganik mempelajari sifat-sifat dan reaksi senyawa anorganik. Dari cabang ini muncul sub cabang ilmu yang lain seperti Kimia Katalis yang mempelajari cara membuat dan mempelajari katalis, Kimia Organometalik yaitu mempelajari sifat dan reaksi perpaduan senyawa organik-logam. Perbedaan antara bidang organik dan anorganik tidaklah mutlak dan banyak terdapat tumpang tindih, khususnya dalam bidang kimia organologam.

       Kimia organik mempelajari struktur, sifat, komposisi, mekanisme, dan reaksi senyawa organik. Suatu senyawa organik didefinisikan sebagai, segala senyawa yang berdasarkan rantai karbon. Untuk membedakan dengan senyawa anorganik maka senyawa organik adalah senyawa yang yang dibangun oleh rantai karbon.

       Mempelajari kimia organik sangat penting bagi orang yang ingin mempelajari farmasi, biokimia, fitokimia, sintesis kimia dan ilmu yang lain.

       Kimia fisik mempelajari sifat fisika dan sifat dasar materi dari suatu sistem kimia atau proses kimia, khususnya energitika dan sifat thermodinamika sistem dan proses tersebut. Sub cabang yang sangat penting dari kimia fisika adalah termodinamika kimia, kinetika kimia, elektrokimia, mekanika statistika, dan spektroskopi. Kimia fisik memiliki banyak tumpang tindih dengan fisika molekular. Kimia fisik melibatkan penggunaan kalkulus untuk menurunkan persamaan, dan biasanya berhubungan dengan kimia kuantum serta kimia teori.

       Kimia Inti adalah cabang ilmu kimia yang mempelajari bagaimana partikel-partikel sub atom bergabung satu sama lain membentuk inti atom.

       Kimia Teori adalah cabang ilmu kimia yang mempelajari kimia berdasarkan teori dengan dukungan ilmu matematika dan fisika dan penerapan kuantum mekanik yang disebut kimia kuantum.

       Kimia teori adalah cabang ilmu kimia yang mempelajari kimia berdasarkan teori dengan dukungan ilmu matematika dan fisika dan penerapan kuantum mekanik yang disebut kimia kuantum. Sejak akhir Perang Dunia II, perkembangan komputer telah memfasilitasi pengembangan sistematik kimia komputasi, yang merupakan seni pengembangan dan penerapan program komputer untuk menyelesaikan permasalahan kimia. Kimia teori memiliki banyak tumpang tindih (secara teori dan eksperimen) dengan fisika benda kondensi dan fisika molekular.

       Kimia nuklir mengkaji bagaimana partikel subatom bergabung dan membentuk inti. Transmutasi modern adalah bagian terbesar dari kimia nuklir dan tabel nuklida merupakan hasil sekaligus perangkat untuk bidang ini.

Bidang lain antara lain adalah astrokimiabiologi molekularelektrokimiafarmakologifitokimiafotokimiagenetika molekulargeokimiailmu bahankimia alirankimia atmosferKimia Bahan Pangan, Kimia Pertanian, Kimia Organik Fisik, Kimia Flavor, Green Chemistry, Kimia matematika, Sintesis Kimia, kimia benda padatkimia hijaukimia medisinalkimia komputasikimia lingkungankimia organologamkimia permukaankimia polimerkimia supramolekularImunoKimia, Fitokimia, Geokimia nanoteknologipetrokimiasejarah kimiasonokimianeurokimia, teknik kimia, serta termokimia.

Konsep dasar

Tatanama IUPAC

Tatanama kimia merujuk pada sistem penamaan senyawa kimia. Telah dibuat sistem penamaan spesies kimia yang terdefinisi dengan baik. Senyawa organik diberi nama menurut sistem tatanama organikSenyawa anorganik dinamai menurut sistem tatanama anorganik.

Atom

Atom adalah suatu kumpulan materi yang terdiri atas inti yang bermuatan positif, yang biasanya mengandung proton dan neutron, dan beberapa elektron di sekitarnya yang mengimbangi muatan positif inti. Atom juga merupakan satuan terkecil yang dapat diuraikan dari suatu unsur dan masih mempertahankan sifatnya, terbentuk dari inti yang rapat dan bermuatan positif dikelilingi oleh suatu sistem elektron.

Unsur Kimia

Unsur kimia adalah sekelompok atom yang memiliki jumlah proton yang sama pada intinya. Jumlah ini disebut sebagai nomor atom unsur. Sebagai contoh, semua atom yang memiliki 6 proton pada intinya adalah atom dari unsur kimia karbon, dan semua atom yang memiliki 92 proton pada intinya adalah atom unsur uranium.
Tampilan unsur-unsur yang paling pas adalah dalam tabel periodik, yang mengelompokkan unsur-unsur berdasarkan kemiripan sifat kimianya. Daftar unsur berdasarkan namalambang, dan nomor atom juga tersedia.

Ion

Ion atau spesies bermuatan, atau suatu atom atau molekul yang kehilangan atau mendapatkan satu atau lebih elektron. Kation bermuatan positif (misalnya kation natrium Na+) dan anion bermuatan negatif (misalnya klorida Cl) dapat membentuk garam netral (misalnya natrium klorida, NaCl). Contoh ion poliatom yang tidak terpecah sewaktu reaksi asam-basa adalah hidroksida (OH) dan fosfat (PO43−).

Senyawa Kimia

Senyawa kimia merupakan suatu zat yang dibentuk oleh dua atau lebih unsur dengan perbandingan tetap yang menentukan susunannya. Sebagia contoh, air merupakan senyawa yang mengandung hidrogen dan oksigendengan perbandingan dua terhadap satu. Senyawa dibentuk dan diuraikan oleh reaksi kimia.

Molekul

Molekul adalah bagian terkecil dan tidak terpecah dari suatu senyawa kimia murni yang masih mempertahankan sifat kimia dan fisik yang unik. Suatu molekul terdiri dari dua atau lebih atom yang terikat satu sama lain.

Zat kimia

Suatu zat kimia dapat berupa suatu unsur, senyawa, atau campuran senyawa-senyawa, unsur-unsur, atau senyawa dan unsur. Sebagian besar materi yang kita temukan dalam kehidupan sehari-hari merupakan suatu bentuk campuran, misalnya airaloybiomassa, dan lain-lain.

Ikatan kimia

Ikatan kimia merupakan gaya yang menahan berkumpulnya atom-atom dalam molekul atau kristal. Pada banyak senyawa sederhana, teori ikatan valensi dan konsep bilangan oksidasi dapat digunakan untuk menduga struktur molekular dan susunannya. Serupa dengan ini, teori-teori dari fisika klasik dapat digunakan untuk menduga banyak dari struktur ionik. Pada senyawa yang lebih kompleks/rumit, seperti kompleks logam, teori ikatan valensi tidak dapat digunakan karena membutuhken pemahaman yang lebih dalam dengan basis mekanika kuantum.

Wujud zat

Fase zat adalah kumpulan keadaan sebuah sistem fisik makroskopis yang relatif serbasama baik itu komposisi kimianya maupun sifat-sifat fisikanya (misalnya masa jenis, struktur kristal, indeks refraksi, dan lain sebagainya). Contoh keadaan fase yang kita kenal adalah padatan, cair, dan gas. Keadaan fase yang lain yang misalnya plasma, kondensasi Bose-Einstein, dan kondensasi Fermion. Keadaan fase dari material magnetik adalah paramagnetikferomagnetik dan diamagnetik.

Reaksi kimia

Reaksi kimia adalah transformasi/perubahan dalam struktur molekul. Reaksi ini bisa menghasilkan penggabungan molekul membentuk molekul yang lebih besar, pembelahan molekul menjadi dua atau lebih molekul yang lebih kecil, atau penataulangan atom-atom dalam molekul. Reaksi kimia selalu melibatkan terbentuk atau terputusnya ikatan kimia.

Kimia kuantum

Kimia kuantum secara matematis menjelaskan kelakuan dasar materipada tingkat molekul. Secara prinsip, dimungkinkan untuk menjelaskan semua sistem kimia dengan menggunakan teori ini. Dalam praktiknya, hanya sistem kimia paling sederhana yang dapat secara realistis diinvestigasi dengan mekanika kuantum murni dan harus dilakukan hampiran untuk sebagian besar tujuan praktis (misalnya, Hartree-Fockpasca-Hartree-Fock, atau teori fungsi kerapatan, lihat kimia komputasiuntuk detilnya). Karenanya, pemahaman mendalam mekanika kuantum tidak diperlukan bagi sebagian besar bidang kimia karena implikasi penting dari teori (terutama hampiran orbital) dapat dipahami dan diterapkan dengan lebih sederhana.
Dalam mekanika kuantum (beberapa penerapan dalam kimia komputasi dan kimia kuantum), Hamiltonan, atau keadaan fisik, dari partikel dapat dinyatakan sebagai penjumlahan dua operator, satu berhubungan dengan energi kinetik dan satunya dengan energi potensial. Hamiltonan dalam persamaan gelombang Schrödinger yang digunakan dalam kimia kuantum tidak memiliki terminologi bagi putaran elektron.
Penyelesaian persamaan Schrödinger untuk atom hidrogen memberikan bentuk persamaan gelombang untuk orbital atom, dan energi relatif dari orbital 1s, 2s, 2p, dan 3p. Hampiran orbital dapat digunakan untuk memahami atom lainnya seperti heliumlitium, dan karbon.

Hukum kimia

Hukum-hukum kimia sebenarnya merupakan hukum fisika yang diterapkan dalam sistem kimia. Konsep yang paling mendasar dalam kimia adalah Hukum kekekalan massa yang menyatakan bahwa tidak ada perubahan jumlah zat yang terukur pada saat reaksi kimia biasa. Fisika modern menunjukkan bahwa sebenarnyaenergilah yang kekal, dan bahwa energi dan massa saling berkaitan.Kekekalan energi ini mengarahkan kepada pentingnya konsepkesetimbangantermodinamika, dan kinetika.

 

(Sumber: https://pengajar.co.id/)